Join us at CWS Summit North America. Learn More

Contingent Workforce Analytics: A Paradigm Shift

Wayne Moles
A paradigm shift is “a fundamental change in approach or underlying assumptions.” And the world has experienced many of them. However, consumers and companies often don’t realize there is a shift happening until they feel the ground shifting beneath their feet. In video games, for years, traditional game controllers used joysticks and buttons. Nintendo introduced a paradigm shift with embedded motion sensors, enabling the controller to be used as a bat, sword, wand, fishing rod, gun, tennis racket and more. The list goes on:
  • Taxi hailing vs. Uber
  • CDs vs. iTunes
  • Blockbuster vs. Netflix

So what does this have to do with contingent workforce analytics?

At IQNavigator, we would rather create a paradigm shift than be impacted by one. So we are focused on reinventing contingent workforce analytics. I’ll describe the difference between simple workforce reporting and advanced analytics, but like all paradigm shifts, the only way to truly understand the difference is to experience it. I didn’t know the value of the Dyson vacuum, motion-sensor controllers, Uber, iTunes or Netflix until I started using them.

The Business Intelligence Ceiling

I’ll talk about the limitations of business intelligence (BI) and reporting before I discuss advanced workforce analytics, but note that BI and reporting have tremendous value; we continually invest in them as an offering. However, the largest limitation is that they are manual—a human is required to interpret and communicate reports. Companies hire analysts to create operational reports, interactive reports and event alerting. This is valuable, but there is a limit to this value. I define the ‘BI ceiling’ as: The point at which deriving additional value from business intelligence becomes cost prohibitive due to additional resources needed—either multiple data analysts, data scientists or both. BI value is dependent on the analysts you hire. At best, you have talented analysts who interpret value from the data. At worst, you have a junior analyst new to the job or industry, who unintentionally makes wrong assumptions about the data they are viewing. You can be left with nonactionable or inaccurate reporting.

Advanced Workforce Analytics

Advanced workforce analytics is a new domain—it is inherently more accurate, insightful and actionable than BI and reporting. It requires “Big Data” data science focused on statistics, data mining and predictive analytics that automatically extract insights from structured or unstructured data. The results of advanced workforce analytics are more powerful. They move from traditional “rear-view-mirror” reporting to descriptive analytics, predictions, automated suggestions and program optimization. Think about how key performance indicators (KPIs) or metrics are managed today. In BI reporting, a person makes up a KPI—it’s completely subjective. BI reports on performance against that subjective KPI. By contrast, advanced workforce analytics can automatically recommend KPIs based on data science and desired company outcome. As data and business goals change, so do the recommended KPIs. At a previous company, we launched a telesales program for a laptop manufacturer. Our customer required a KPI of 60 outbound sales calls per day per sales rep. Why? Because that’s the metric they had used for the past 10 years. We deployed revenue analytics and discovered sales associates making 40 calls a day sold more laptops. So we went to our program manager and asked, “Do you want to make 60 calls a day or sell more laptops?” Instead of optimizing our program to generate more revenue, we were optimized to make more calls in a day. While our BI reporting bar graphs looked great and showed “progress,” we were actually leaving revenue on the table!

Welcome IQN ATOM

Our VP of Data Science, Anne Zelenka, and her talented team of data scientists have delivered an industry first in workforce analytics: ATOM (Automated Talent Ontology Machine). It’s a cognitive-learning machine that understands the talent domain—think of IBM Watson for talent. Initially, ATOM will help our clients with real-time recommendations on rates, time-to-fill, and labor-demand recommendations and predictions. ATOM will also assist hiring managers in determining the right talent and skillsets needed for their strategic projects—no expensive analysts needed. And ATOM will be capable of so much more. We’ll talk more about ATOM in future blogs and news releases. I’m excited about what advanced workforce analytics will do for our customers, partners and this industry. I recommend that everyone start researching this paradigm shift in analytics within our industry, or you may get caught on the wrong side of a paradigm shift…

Related Resources

Discover and learn how Beeline helps you engage with the external workforce.

Successfully Expanding Your Contingent Workforce Program – Brightfield Strategies webinar sponsored by Beeline

Looking to expand your contingent workforce management program? Across the country or perhaps even globally?

Learn More
Case Study
Global Telecommunications Giant Selects Beeline VMS for Better Governance, Supplier Management & Risk Mitigation

A global telecommunications company, with 156 million mobile customers and hundreds of affiliates and subsidiaries...

Read Now
Industry Report
Solution Spotlight on Beeline (Ardent Partners)

As the business world becomes more “consumerized” in its demand for real-time, on-demand productivity, enterprises need the tools to go beyond simply managing their non-employee talent.

Read now